Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Appl Mater Interfaces ; 14(25): 28615-28627, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1890109

ABSTRACT

In this study, we present a complementary approach for obtaining an effective drug, based on acriflavine (ACF) and zirconium-based metal-organic frameworks (MOFs), against SARS-CoV-2. The experimental results showed that acriflavine inhibits the interaction between viral receptor-binding domain (RBD) of spike protein and angiotensin converting enzyme-2 (ACE2) host receptor driving viral cell entry. The prepared ACF@MOF composites exhibited low (MOF-808 and UiO-66) and high (UiO-67 and NU-1000) ACF loadings. The drug release profiles from prepared composites showed different release kinetics depending on the local pore environment. The long-term ACF release with the effective antiviral ACF concentration was observed for all studied ACF@MOF composites. The density functional theory (DFT) calculations allowed us to determine that π-π stacking together with electrostatic interaction plays an important role in acriflavine adsorption and release from ACF@MOF composites. The molecular docking results have shown that acriflavine interacts with several possible binding sites within the RBD and binding site at the RBD/ACE2 interface. The cytotoxicity and ecotoxicity results have confirmed that the prepared ACF@MOF composites may be considered potentially safe for living organisms. The complementary experimental and theoretical results presented in this study have confirmed that the ACF@MOF composites may be considered a potential candidate for the COVID-19 treatment, which makes them good candidates for clinical trials.


Subject(s)
COVID-19 Drug Treatment , Metal-Organic Frameworks , Acriflavine/pharmacology , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Phthalic Acids , Protein Binding , SARS-CoV-2 , Zirconium/chemistry
2.
ACS Appl Mater Interfaces ; 13(1): 312-323, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-997781

ABSTRACT

In this study, we present a modulated synthesis nanocrystalline defective UiO-66 metal-organic framework as a potential chloroquine diphosphate (CQ) delivery system. Increasing the concentration of hydrochloric acid during the modulated synthesis resulted in a considerable increase of pore volume, which enhanced the CQ loading in CQ@UiO-66 composites. Drug release tests for CQ@UiO-66 composites have confirmed prolonged CQ release in comparison with pure CQ. In vivo tests on a Danio reiro model organism have revealed that CQ released from CQ@UiO-66 25% showed lower toxicity and fewer cardiotoxic effects manifested by cardiac malformations and arrhythmia in comparison to analogous doses of CQ. Cytotoxicity tests proved that the CQ loaded on the defective UiO-66 cargo resulted in increased viability of cardiac cells (H9C2) as compared to incubation with pure CQ. The experimental results presented here may be a step forward in the context of reducing the cardiotoxicity CQ.


Subject(s)
Chloroquine/analogs & derivatives , Heart Diseases/drug therapy , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Animals , Chloroquine/adverse effects , Chloroquine/chemistry , Chloroquine/pharmacology , Disease Models, Animal , Drug Delivery Systems/adverse effects , Drug Liberation/drug effects , HEK293 Cells , Heart Diseases/chemically induced , Heart Diseases/pathology , Humans , Hydrochloric Acid/pharmacology , Metal-Organic Frameworks/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL